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Symbols

AP mass number of projectile nucleus

AT mass number of target nucleus

B Coulomb barrier

CE function related to transparency and Pauli blocking

D parameter related to density of colliding system

E colliding energy, A MeV

Ecm center of mass energy of colliding system, A MeV

G high-energy parameter forα + X system

R energy-dependent radius of colliding system

Rc system-dependent Coulomb multiplier

rP hard sphere radius of projectile nucleus

rrms root-mean-square radius

rT hard sphere radius of target nucleus

r0 constant related to radius of a nucleus

S mass asymmetry term

SL function used in optical model multiplier

T1 parameter related to surface of colliding system

Xm optical model multiplier

X1 target-dependent function used in optical model multiplier

ZP charge number of projectile nucleus

ZT charge number of target nucleus

δ energy-dependent or energy-independent parameter

δE energy-dependent function

σel elastic cross section



iv

σR total reaction cross section

σT total cross section



Abstract

Our prior nuclear absorption cross sections model (NASA Technical
Paper 3621) is extended for light systems  where either both projectile
and target are light particles or one is a light particle and the other is a medium
or heavy nucleus. The agreement with experiment is excellent for these cases as
well. Present work in combination with our original model provides a comprehen-
sive picture of absorption cross sections for light, medium, and heavy systems, a
very valuable input for radiation protection studies.

Introduction

The transportation of energetic ions in bulk matter
is of direct interest in several areas (refs. 1 and 2),
including shielding against ions originating from
either space radiations or terrestrial accelerators, cos-
mic ray propagation studies in galactic medium, or
radiobiological effects resulting from the work place
or clinical exposures. For carcinogenesis, terrestrial
radiation therapy, and radiobiological research,
knowledge of the beam composition and interactions
is necessary to properly evaluate the effects on human
and animal tissues. For the proper assessment to radia-
tion exposures, both reliable transport codes and accu-
rate input parameters are needed.

One such important input is the total reaction
cross sectionσR, defined as the totalσT minus the
elastic cross sectionsσel, for two colliding ions:

(1)

A model has been developed for absorption cross
sections (refs. 3 to 6) that gives very reliable results
for the entire energy range from a few A MeV to a few
A GeV. It is gratifying to note that several agencies
and institutions have adopted the model and are using
it with success in their programs. The present work
extends the model to lighter systems, where either or
both projectile and target are light particles. The
details of our previous model are discussed elsewhere.
(See refs. 3 to 6.) The main features of the formalism
are reproduced for completeness and to put the light
systems in proper context.

Model Description

Most of the empirical models approximate total
reaction cross section of the Bradt-Peters form:

(2)

where  is a constant related to the radius of a collid-
ing ion, δ is either a constant or an energy-dependent
parameter, and  and  are the projectile and tar-
get mass numbers, respectively. This form of parame-
terization works nicely for higher energies. However,
at lower energies for charged ions, Coulomb interac-
tion becomes important and modifies reaction cross
sections significantly. For the neutron-nucleus colli-
sions, there is no Coulomb interaction, but the total
reaction cross section for these collisions is modified
by the strength of the imaginary part of the optical
potential at the surface, which was incorporated by
introducing a low-energy multiplier  that accounts
for the strength of the optical model interaction.
Because the same form of parameterization is used for
the neutron-nucleus case as well (refs. 4 and 6)—
which helped to provide a unified, consistent, and
accurate picture of the total reaction cross sections for
any system of colliding nuclei for the entire energy
range—the absorption cross sections for light systems
are incorporated in the same formalism also. Note that
strong absorption models suggest energy dependence
of the interaction radius. Incorporating these effects,
and other effects discussed later, the following form
for the reaction cross section is used as before:

(3)

where  fm and  is the colliding system
center of mass energy in A MeV. The second to last
term on the right-hand side is the Coulomb interaction
term which modifies the cross section at lower ener-
gies and becomes less important as the energy
increases (typically after several tens of A MeV). The
Coulomb multiplier  is needed in order to have the
same formalism for the absorption cross sections for
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light, medium, and heavy systems and for reasons
discussed later. In equation (3),B is the energy-
dependent Coulomb interaction barrier (right-hand
factor in eq. (3)), and is given by

(4)

where  and  are atomic numbers of the projec-
tile and target, respectively, andR, the radius for eval-
uating the Coulomb barrier height, is

(5)

where  is equivalent hard sphere radius and is
related to the  radius by

(6)

with i = P,T. The computer routine to calculate the
radius of a nucleus is given in reference 7.

Energy dependence in the reaction cross section at
intermediate and higher energies is mainly because of
two effects—transparency and Pauli blocking; this is
taken into account in  which is

(7)

whereS is the mass asymmetry term, defined as

(8)

and is related to the volume overlap of the collision
system. The last term on the right-hand side of equa-
tion (7) accounts for the isotope dependence of the
reaction cross section. The term  is related to the
transparency and Pauli blocking and is given by

(9)

where the collision kinetic energyE is in A MeV.
HereD is related to the density dependence of the col-
liding system and can be nicely related to the densities
of the colliding systems for medium and heavier sys-
tems (refs. 3 to 6). This in effect simulates the modifi-
cations of the reaction cross sections due to Pauli
blocking. Equations (1) to (9) summarize our original
model. For systems discussed in our previous work
T1 = 40 in equation (9) gave very good results. For
light systems studied here, where both projectile and
target are light systems, there is a significant amount
of surface in both the projectile and target nuclei and
each system behaves somewhat different from the
other. The best values of parameterD andT1 in equa-
tion (9) for the cases studied here are as follows:

n(p) + X systems:

(10)

d + X systems:

(11)

3He + X systems:

(12)

4He + X systems:

(13)

Table 1 gives the values of the parametersT1 andG
for alpha-nucleus systems.

For medium and heavy systems,D can be
expressed in a very simple way in terms of the densi-
ties of the colliding nuclei. (See refs. 3 to 6.) Interest-
ing physics is associated with constantD. The
parameterD in effect simulates the modifications of
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the reaction cross sections due to Pauli blocking. This
effect is new and has not been taken into account in
other empirical calculations. The introduction of the
parameterD and its association with the physical phe-
nomenon of Pauli blocking helps present a universal
picture of the reaction cross sections. At lower ener-
gies (below several tens of A MeV) where the overlap
of interacting nuclei is small (and where Coulomb
interaction and imaginary part of the optical potential
modify the reaction cross sections significantly), the
modifications of the cross sections due to Pauli block-
ing are small and gradually play an increasing role as
the energy increases because this leads to higher
densities where Pauli blocking gets increasingly
important.

This method of calculation of Coulomb energy
does provide a unified picture of reaction cross
sections for any system of colliding nuclei. For light
systems, equation (5) overestimates the interaction
distance and consequently equation (4) underestimates
the Coulomb energy effect. In order to compensate for
this effect and still maintain the same formalism for
light, medium, and heavy systems, there was a need to
introduce a Coulomb multiplier parameterRc in equa-
tion (3). Table 2 gives the values ofRc for the cases
studied here. The optical model multiplier as intro-
duced in references 4 and 6 is given by

(14)

with

(15)

For the n +4He system,X1  = 5.2 gives better agree-
ment with experiment. The functionSL for light sys-
tems as used here is

(16)

Results

Figures 1 to 20 show the plots of available re-
sults for neutron-nucleus, proton-nucleus, deuteron-
nucleus, helium 3-nucleus, and alpha-nucleus systems.
The data in figures 1 and 2 are from reference 8, and
data in figure 3 have been taken from references 8
and 9. For figure 4, data have been taken from refer-
ences 9 to 11. An extensive data set exists for p +4He

collisions (fig. 5), and data have been taken from ref-
erences 8, 9, and 11 to 16. Data for figures 6 and 7
have mainly been collected from the compilation of
reference 9, and those of figures 8 to 10 are from refer-
ence 12. Not much data are available for3He-nucleus
collisions and the data have been taken from refer-
ence 17 for figures 11 to 13. For4He + 4He (fig. 14),
data have been taken from references 12, 13, and 17.
For figure 15, data have been taken from reference 17.
For figures 16 to 18, data have been taken from refer-
ence 18, and those of figures 19 and 20 have been
taken from reference 19.

Concluding Remarks

The agreement of our results with experiments for
light systems is excellent for the entire energy range
from a few A MeV to a few A GeV and is of the same
quality as that of our previous work. Present work in
combination with our original model provides a com-
prehensive picture of absorption cross sections for
light, medium, and heavy systems. We are not aware
of any published or reported model which gives as
good agreement for absorption cross sections for light,
medium, and heavy systems for the entire energy
range as found here.
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Table 1. Parameters forα + X Systems

System T1 G

General setting 40 75

α + α 40 300

α + Be 25 300

α + N 40 500

α + Al 25 300

α + Fe 40 300

Table 2. Coulomb Multiplier for Light Systems

System Rc

p + d 13.5

p + 3He 21

p + 4He 27

p + Li 2.2

d + d 13.5

d + 4He 13.5

d + C 6.0
4He + Ta 0.6
4He + Au 0.6



6

Figure 1. Reaction cross sections as a function of energy for n + d collisions.

Figure 2. Reaction cross sections as a function of energy for n + alpha collisions.
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Figure 3. Reaction cross sections as a function of energy for p + d collisions.

Figure 4. Reaction cross sections as a function of energy for p + helium 3 collisions.
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Figure 5. Reaction cross sections as a function of energy for p + alpha collisions.

Figure 6. Reaction cross sections as a function of energy for p + lithium 6 collisions.
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Figure 7. Reaction cross sections as a function of energy for p + lithium 7 collisions.

Figure 8. Reaction cross sections as a function of energy for d + d collisions.
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Figure 9. Reaction cross sections as a function of energy for d + alpha collisions.

Figure 10. Reaction cross sections as a function of energy for d + carbon collisions.
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Figure 11. Reaction cross sections as a function of energy for helium 3 + beryllium collisions.

Figure 12. Reaction cross sections as a function of energy for helium 3 + carbon collisions.
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Figure 13. Reaction cross sections as a function of energy for helium 3 + aluminum collisions.

Figure 14. Reaction cross sections as a function of energy for alpha + alpha collisions.
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Figure 15. Reaction cross sections as a function of energy for alpha + beryllium collisions.

Figure 16. Reaction cross sections as a function of energy for alpha + nitrogen collisions.
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Figure 17. Reaction cross sections as a function of energy for alpha + aluminum collisions.

Figure 18. Reaction cross sections as a function of energy for alpha + iron collisions.
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Figure 19. Reaction cross sections as a function of energy for alpha + tantalum collisions.

Figure 20. Reaction cross sections as a function of energy for alpha + gold collisions.
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Our prior nuclear absorption cross sections model (NASA Technical Paper 3621) is extended for light systems
 where either both projectile and target are light particles or one is a light particle and the other is a medium

or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination
with our original model provides a comprehensive picture of absorption cross sections for light, medium, and
heavy systems, a very valuable input for radiation protection studies.
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